Expressive power of recurrent neural networks

نویسندگان

  • Valentin Khrulkov
  • Alexander Novikov
  • Ivan V. Oseledets
چکیده

Deep neural networks are surprisingly efficient at solving practical tasks, but the theory behind this phenomenon is only starting to catch up with the practice. Numerous works show that depth is the key to this efficiency. A certain class of deep convolutional networks – namely those that correspond to the Hierarchical Tucker (HT) tensor decomposition – has been proven to have exponentially higher expressive power than shallow networks. I.e. a shallow network of exponential width is required to realize the same score function as computed by the deep architecture. In this paper, we prove the expressive power theorem (an exponential lower bound on the width of the equivalent shallow network) for a class of recurrent neural networks – ones that correspond to the Tensor Train (TT) decomposition. This means that even processing an image patch by patch with an RNN can be exponentially more efficient than a (shallow) convolutional network with one hidden layer. Using theoretical results on the relation between the tensor decompositions we compare expressive powers of the HTand TT-Networks. We also implement the recurrent TT-Networks and provide numerical evidence of their expressivity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The expressive power of analog recurrent neural networks on infinite input streams

We consider analog recurrent neural networks working on infinite input streams, provide a complete topological characterization of their expressive power, and compare it to the expressive power of classical infinite word reading abstract machines. More precisely, we consider analog recurrent neural networks as language recognizers over the Cantor space, and prove that the classes of ω-languages...

متن کامل

Xpressive Power of Recurrent Neural Net - Works

Deep neural networks are surprisingly efficient at solving practical tasks, but the theory behind this phenomenon is only starting to catch up with the practice. Numerous works show that depth is the key to this efficiency. A certain class of deep convolutional networks – namely those that correspond to the Hierarchical Tucker (HT) tensor decomposition – has been proven to have exponentially hi...

متن کامل

Dataflow Matrix Machines as a Model of Computations with Linear Streams

We overview dataflow matrix machines as a Turing complete generalization of recurrent neural networks and as a programming platform. We describe vector space of finite prefix trees with numerical leaves which allows us to combine expressive power of dataflow matrix machines with simplicity of traditional recurrent neural networks.

متن کامل

Robust stability of stochastic fuzzy impulsive recurrent neural networks with\ time-varying delays

In this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varyingdelays which are represented by the Takagi-Sugeno (T-S) fuzzy models is considered. A novel Linear Matrix Inequality (LMI)-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural...

متن کامل

Programming Patterns in Dataflow Matrix Machines and Generalized Recurrent Neural Nets

Dataflow matrix machines arise naturally in the context of synchronous dataflow programming with linear streams. They can be viewed as a rather powerful generalization of recurrent neural networks. Similarly to recurrent neural networks, large classes of dataflow matrix machines are described by matrices of numbers, and therefore dataflow matrix machines can be synthesized by computing their ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1711.00811  شماره 

صفحات  -

تاریخ انتشار 2017